A note on Jacobson rings and polynomial rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on Star Operations over Polynomial Rings

This paper studies the notions of star and semistar operations over a polynomial ring. It aims at characterizing when every upper to zero in R[X] is a ∗-maximal ideal and when a ∗-maximal ideal Q of R[X] is extended from R, that is, Q = (Q ∩ R)[X] with Q ∩R 6= 0, for a given star operation of finite character ∗ on R[X]. We also answer negatively some questions raised by Anderson-Clarke by const...

متن کامل

Distributive Lattices of Jacobson Rings

We characterize the distributive lattices of Jacobson rings and prove that if a semiring is a distributive lattice of Jacobson rings, then, up to isomorphism, it is equal to the subdirect product of a distributive lattice and a Jacobson ring. Also, we give a general method to construct distributive lattices of Jacobson rings.

متن کامل

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

Rings with a setwise polynomial-like condition

Let $R$ be an infinite ring. Here we prove that if $0_R$ belongs to ${x_1x_2cdots x_n ;|; x_1,x_2,dots,x_nin X}$ for every infinite subset $X$ of $R$, then $R$ satisfies the polynomial identity $x^n=0$. Also we prove that if $0_R$ belongs to ${x_1x_2cdots x_n-x_{n+1} ;|; x_1,x_2,dots,x_n,x_{n+1}in X}$ for every infinite subset $X$ of $R$, then $x^n=x$ for all $xin R$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1989

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1989-0929416-7